Water Resources on Guam: Potential impacts and adaptive response to climate change for Department of Defense installations RC-2340

Dr. Stephen B. Gingerich U.S. Geological Survey

Brief to the Scientific Advisory Board June 12, 2013

Performers

- Dr. Stephen B. Gingerich
- Dr. Delwyn S. Oki

U.S. Geological Survey (USGS) Pacific Islands Water Science Center Groundwater & surface-water modeling

- Dr. Annamalai Hariharasubramanian
- Dr. Kevin Hamilton
- **Dr. Yuqing Wang**

University of Hawai'i-International Pacific Research Center (UH-IPRC) Future climate modeling (typhoons, precipitation, temperature, etc.)

- Dr. John W. Jenson
- Dr. Mark A. Lander

University of Guam-Water & Environmental Research Institute Physical & geological process measurements

Dr. Jay L. Banner

University of Texas-Austin Geochemistry of hydrologic cycle

- Dr. Melissa L. Finucane
- Dr. Victoria Keener

Pacific Regional Integrated Sciences and Assessments (RISA), East-West Center (EWC) Communication & stakeholder engagement

Problem Statement

- The DoD relies on surface water & groundwater for operations at its Guam installations
- Demands are projected to increase & the effects of climate change may limit the water resources available to meet these demands on this isolated island
- Research is needed to quantify future water availability & describe adaptive strategies to minimize the adverse impacts on DoD installations

Technical Objective

For a range of climate-change scenarios on Guam we will:

- Evaluate how streamflow, sediment loads, & turbidity will be modified & affect surface-water availability
- Assess how groundwater recharge & salinity will be modified
- Define impacts to DoD infrastructure supplying surface water & groundwater & highlight adaptive strategies to maximize the water resources
- Evaluate & implement effective communication strategies to inform water managers about potential impacts & adaptive strategies

Northern Guam

- Groundwater domain
- Karst limestone aquifer
- "Urbanized"
- 40 Mgal/d from about 150 public & DoD wells
- Water supply vulnerable to droughts & saltwater intrusion

Southern Guam

- Surface-water domain
- Weathered volcanics & limestone
- Rural
- 11 Mgal/d from Navy's Fena Valley Reservoir & 2 smaller public sources
- Water supply vulnerable to droughts & frequent typhoons & tropical storms

Technical Background-Fena Valley Watershed

- Existing USGS Precipitation-Runoff Modeling System (PRMS)
- Calibrated using USGS streamgaging stations & rainfall stations
- Limited areal extent
- Factors vulnerable to climate change
 - Vegetation
 - Rainfall
 - Evapotranspiration
 - Runoff
 - Extreme event size & frequency

Technical Background-Fena Valley Reservoir

Affected by climate change

Technical Background-Northern Guam Lens Aquifer

Technical Background-Northern Guam Lens Aquifer

 PI Gingerich led USGS study from 2010–13, funded by U.S. Marine Corps

Estimated groundwater recharge

Developed numerical groundwater model using
 Saturated-Unsaturated TRAnsport code (SUTRA)

Technical Approach

Task 1: Climate Projection

- Future climate may have different daily & drought conditions & typhoon frequency & intensity (typhoons produce about 12% of rainfall)
- Assess Coupled Model Intercomparison
 Project (CMIP5) simulations choose "best models" matching rainfall & sea-surface temperature at coarse resolution
- Design experiments with fine-resolution (1-3 km) regional model
 - UH-IPRC regional atmospheric model (iRAM) to improve understanding of longterm changes in tropical cyclone behavior
 - Atmospheric circulation, clouds, & rainfall over tropical & subtropical regions
- Examine changes in occurrence probability of storm characteristics
- TRACK program will objectively identify features that are tracked through the time sequence to produce feature trajectories

 Produce a range of estimates of rainfall, wind speed, evaporation, etc. to feed into surface-water & groundwater-recharge models

Task 2: Southern Guam Watershed Model

- Current USGS PRMS model can be improved & expanded to other watersheds providing surface water in southern Guam
- Calibrate model with USGS streamflow & rainfall data in gaged basins
- Supplement with Next-Generation Radar (NEXRAD) rainfall data for ungaged areas
- Evaluate streamflow response to climate change using calibrated model to provide estimates of a range of future streamflow conditions

Task 3: Fena Valley Reservoir Capacity

- Knowledge of reservoir capacity based on 23-yr old bathymetry data
- New data collection & analysis needed to update reservoir model
 - Perform bathymetric survey
 - Differential Global Positioning System (GPS)
 - Survey-grade echo sounder accurate to < 1 cm
 - Collect sediment cores at about 10 sites & analyze for bulk density & grain-size distribution
 - Compare new bathymetry to past bathymetry to get sedimentation rate
 - Compare sediment record with typhoon record to correlate events
 - Compare turbidity record with rainfall record to correlate events
- Update reservoir water-balance model
 - Incorporate new reservoir volume
 - Incorporate new streamflow estimates from watershed model
 - Apply a range of projected meteorological conditions to estimate future volumes
 - Evaluate reoccurrence interval for high-turbidity conditions

Task 4: Groundwater Geochemistry & Water Budget

- Determining 1) rate & timing of recharge and 2) groundwater flow paths are critical for understanding groundwater resources
- Use geochemical tracers to reveal groundwater flow paths & residence times (fast vs. slow pathways)
- Sample rain, cave drip water, wells, springs, & rocks across northern Guam for cations, anions, Sr & water isotopes; ~100 samples/year for 3 years
- Reevaluate & refine USGS water-budget model to account for fast & slow recharge out of soil reservoir
- Recompute current recharge using refined waterbudget model
- Apply a range of projected meteorological conditions to determine a range of future recharge estimates
- New estimates of current & future recharge will be available for the existing groundwater model

Task 5: Northern Guam Groundwater Model

- Recently developed SUTRA groundwater model is the best tool to evaluate future pumping scenarios for DoD & public demand
- Evaluate model using updated current recharge & if needed, recalibrate by adjusting hydraulic properties
- Apply a range of future recharge & sea-level estimates to evaluate the impacts to the salinity of DoD & publicsupply wells

Task 6: Adaptive Strategies

What are the effects of applying different adaptive management strategies to waterresource management?

Surface-water examples

- Provide estimates of volume increase to Fena Valley Reservoir by:
 - Dredging
 - Raising spillway height
 - Modifying water intake height
- Provide estimates of expected increases in high-turbidity water episodes requiring treatment

Groundwater examples

- Provide estimates of pumping rate & salinity distribution in wells for:
 - "taking no action"
 - Modifying pumping rates at existing wells
 - Replacing wells that are too deep
 - Modifying pump intake depths to account for rising sea level
 - Shifting production to less-vulnerable locations

Evaluate salinity & volume with conjunctive use of surface water & groundwater

Task 7: Communicating Results

Examples of salinity distribution maps for average & historical drought conditions

Task 7: Communicating Impacts

- Need to link information suppliers & users to improve decision makers' capacity to use the information generated from this research in their planning & adaptation activities
- Theoretical framework drawn from risk-communication & behavioral-decision research
- Incorporate purposive sampling; in-depth interviews; workshops; online survey
- Assess stakeholder characteristics to understand their current & potential use of climate & other uncertain information
- Assess information characteristics to understand how features of information about the
 effects of climate change on water conditions influence (1) understanding of potential
 impacts of climate on estimates & (2) preferences among alternative management solutions
- Assess context characteristics to understand barriers to information use & decision-support needs
- Summarize qualitative & quantitative findings; scenario descriptions (traditional & policy relevant); guidance on scenario development & intended use

Year 1 Project Plan

		TOTAL \$682K
•	Information transfer/meetings/project management	\$71K
•	Communicating impacts (Task 7)	\$83K
•	Adaptive strategies (Task 6)	\$0K
•	Numerical groundwater model (Task 5)	\$0K
•	Groundwater geochemistry & water budget (Task 4)	\$97K
•	Reservoir capacity (Task 3)	\$145K
•	Watershed model (Task 2)	\$226K
•	Regional climate projections (Task 1)	\$59K

Overall Project Plan

TASK	FY 2014	FY 2015	FY 2016	FY 2017
1. Regional Climate Projections				
2. Watershed Model				
3. Reservoir Capacity				
4. Groundwater Geochemistry & Water Budget				
5. Numerical Groundwater Model				
6. Adaptive Strategies				
7. Communicating Impacts				
SERDP Reports				

Project Funding

\$K	SERDP	UH-IPRC
Year 1	682	20
Year 2	505	20
Year 3	673	0
Year 4	419	0
Total	2,279	40

Deliverables

At least 4 scientific journal publications

- Climate-change modeling & projections
- Geochemical tracers & recharge mechanisms
- Updated & future water budgets
- Groundwater & surface water adaptive management

1 USGS peer-reviewed Scientific Investigations Report

 Watershed model & updated reservoir water balance (functions as a User's Guide)

Training

- 2 Masters students
- 1 post-doc